Parameters Identification of an Experimental Vision-based Target Tracker Robot Using Genetic Algorithm
نویسندگان
چکیده مقاله:
In this paper, the uncertain dynamic parameters of an experimental target tracker robot are identified through the application of genetic algorithm. The considered serial robot is a two-degree-of-freedom dynamic system with two revolute joints in which damping coefficients and inertia terms are uncertain. First, dynamic equations governing the robot system are extracted and then, simulated numerically. Next, an open-loop experiment with finite duration step inputs is implemented on the experimental setup to collect practical output data. Accordingly, a desired objective function is defined as the sum of discrepancy between the experimental and simulated output data. Subsequently, a genetic algorithm is employed to explore the best damping coefficients and inertia terms of the simulation scheme so as to minimize the presented cost function and taking into account the same input data for both simulation and experiment. Finally, the simulated output data based on the identified robot parameters reveal an acceptable agreement with the measured outputs through which validity of the identification scheme is affirmed.
منابع مشابه
Particle Swarm Optimization Based Parameter Identification Applied to a Target Tracker Robot with Flexible Joint
This paper focuses on parameter identification of a target tracker robot possessing flexible joints using particle swarm optimization (PSO) algorithm. Since, belt and pulley mechanisms are known as flexible joints in robotic systems, their elastic behavior affecting a tracker robot is investigated in this work. First, dynamic equations governing the robot behavior are extracted taking into acco...
متن کاملAn Efficient Target Tracking Algorithm Based on Particle Filter and Genetic Algorithm
In this paper, we propose an efficient hybrid Particle Filter (PF) algorithm for video tracking by employing a genetic algorithm to solve the sample impoverishment problem. In the presented method, the object to be tracked is selected by a rectangular window inside which a few numbers of particles are scattered. The particles’ weights are calculated based on the similarity between feature vecto...
متن کاملRobot Path Planning Using Cellular Automata and Genetic Algorithm
In path planning Problems, a complete description of robot geometry, environments and obstacle are presented; the main goal is routing, moving from source to destination, without dealing with obstacles. Also, the existing route should be optimal. The definition of optimality in routing is the same as minimizing the route, in other words, the best possible route to reach the destination. In most...
متن کاملThe experimental parameters optimization approach using a learning genetic algorithm
A learning genetic algorithm is proposed to solve the experimental parameters optimization problem. This method can not only enhance the efficiency of genetic algorithm through the pre-given user experience, but also improve the efficiency of genetic algorithm via learning the knowledge obtained from the optimization process. Experimental results suggest that the learning genetic algorithm can ...
متن کاملMotion based Segmentation for Robot Vision using Adapted EM Algorithm
Robots operate in a dynamic world in which objects are often moving. The movement of objects may help the robot to segment the objects from the background. The result of the segmentation can subsequently be used to identify the objects. This paper investigates the possibility of segmenting objects of interest from the background for the purpose of identification based on motion. It focusses on ...
متن کاملSolving Drug Enzyme-Target Identification Problem Using Genetic Algorithm
In this paper, a genetic algorithm is proposed to solve the drug enzyme-target identification problem and a model of a more complex case of this problem is considered.
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 31 شماره 3
صفحات 480- 486
تاریخ انتشار 2018-03-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023